Problem 4.20

Consider the earth-sun system as a gravitational analog to the hydrogen atom.
(a) What is the potential energy function (replacing Equation 4.52)? (Let m_{E} be the mass of the earth, and M the mass of the sun.)
(b) What is the "Bohr radius," a_{g}, for this system? Work out the actual number.
(c) Write down the gravitational "Bohr formula," and, by equating E_{n} to the classical energy of a planet in a circular orbit of radius r_{o}, show that $n=\sqrt{r_{o} / a_{g}}$. From this, estimate the quantum number n of the earth.
(d) Suppose the earth made a transition to the next lower level $(n-1)$. How much energy (in Joules) would be released? What would the wavelength of the emitted photon (or, more likely, graviton) be? (Express your answer in light years-is the remarkable answer ${ }^{28}$ a coincidence?)

Solution

Consider the earth (with mass $m_{E} \approx 5.98 \times 10^{24} \mathrm{~kg}$) in a circular orbit around the sun (with mass $M \approx 1.99 \times 10^{30} \mathrm{~kg}$). Because the sun is roughly 300000 times more massive than earth, the sun's motion can be neglected to a good approximation. As such, let the sun lie at the origin of space. Ignore the earth's spin.

The earth is somewhere around the sun; solve the Schrödinger equation to determine its wave function.

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m_{E}} \nabla^{2} \Psi+V(x, y, z) \Psi(x, y, z, t)
$$

The potential energy function $V(x, y, z)$ is determined from

$$
\mathbf{F}=-\nabla V,
$$

where \mathbf{F} is given by Newton's law of universal gravitation.

$$
-G \frac{\left(m_{E}\right)(M)}{r^{2}} \hat{\mathbf{r}}=-\nabla V,
$$

Since the force is only dependent on the spherical coordinate $r=\sqrt{x^{2}+y^{2}+z^{2}}$, the potential energy function is as well.

$$
-G \frac{m_{E} M}{r^{2}}=-\frac{d V}{d r}
$$

[^0]Multiply both sides by -1 and then integrate both sides from ∞ to r.

$$
\int_{\infty}^{r} G \frac{m_{E} M}{r_{0}^{2}} d r_{0}=\int_{\infty}^{r} \frac{d V}{d r}\left(r_{0}\right) d r_{0}
$$

Evaluate the integrals.

$$
-\left.G \frac{m_{E} M}{r_{0}}\right|_{\infty} ^{r}=V(r)-\underbrace{V(\infty)}_{=0}
$$

As a result,

$$
V(r)=-G \frac{m_{E} M}{r}
$$

and Schrödinger's equation becomes

$$
\begin{aligned}
i \hbar \frac{\partial \Psi}{\partial t} & =-\frac{\hbar^{2}}{2 m_{E}} \nabla^{2} \Psi+V(r) \Psi(r, \phi, \theta, t) \\
& =-\frac{\hbar^{2}}{2 m_{E}}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}\right]+V(r) \Psi(r, \phi, \theta, t)
\end{aligned}
$$

The aim is to solve for $\Psi=\Psi(r, \theta, \phi, t)$ in all of space ($0 \leq r<\infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$) for $t>0$. Assuming a product solution of the form $\Psi(r, \theta, \phi, t)=R(r) \Theta(\theta) \xi(\phi) T(t)$ and plugging it into the PDE yields the following system of ODEs (see Problem 4.4).

$$
\left.\begin{array}{rl}
i \hbar \frac{T^{\prime}(t)}{T(t)} & =E \\
\frac{1}{R(r)} \frac{d}{d r}\left(r^{2} R^{\prime}(r)\right)-\frac{2 m_{E} r^{2}}{\hbar^{2}}[V(r)-E] & =F \\
\frac{\sin \theta}{\Theta(\theta)} \frac{d}{d \theta}\left(\Theta^{\prime}(\theta) \sin \theta\right)+F \sin ^{2} \theta & =\mathscr{G} \\
-\frac{\xi^{\prime \prime}(\phi)}{\xi(\phi)} & =\mathscr{G}
\end{array}\right\}
$$

The normalized products of angular eigenfunctions $\Theta(\theta) \xi(\phi)$ are called the spherical harmonics and are denoted by $Y_{\ell}^{m}(\theta, \phi)$. Solutions only exist if $F=\ell(\ell+1)$, where $\ell=0,1,2, \ldots$, and if $\mathscr{G}=m^{2}$ is an integer.

$$
Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{(2 \ell+1)}{4 \pi} \frac{(\ell-m)!}{(\ell+m)!}} e^{i m \phi} P_{\ell}^{m}(\cos \theta), \quad\left\{\begin{array}{l}
\ell=0,1,2, \ldots \\
m=-\ell,-\ell+1, \ldots,-1,0,1, \ldots, \ell-1, \ell
\end{array}\right.
$$

With these results the equation for $R(r)$ becomes

$$
\begin{gather*}
\frac{1}{R(r)} \frac{d}{d r}\left(r^{2} R^{\prime}(r)\right)-\frac{2 m_{E} r^{2}}{\hbar^{2}}\left(-\frac{G m_{E} M}{r}-E\right)=\ell(\ell+1) \\
\frac{d}{d r}\left[r^{2} \frac{d R}{d r}(r)\right]+\left[2\left(\frac{G m_{E}^{2} M}{\hbar^{2}}\right) r+\frac{2 m_{E} r^{2}}{\hbar^{2}} E\right] R(r)-\ell(\ell+1) R(r)=0 . \tag{1}
\end{gather*}
$$

Note that since we're interested in the bound states (the sun and earth paired together), $E<0$. Also, the grouping of constants in parentheses is $1 / a_{g}$, where a_{g} is the gravitational Bohr radius.

$$
a_{g}=\frac{\hbar^{2}}{G m_{E}^{2} M} \approx \frac{\left(1.054571726 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{\left(6.673 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)^{2}\left(1.99 \times 10^{30} \mathrm{~kg}\right)} \approx 2.34 \times 10^{-138} \mathrm{~m}
$$

Make the change of variables,

$$
s=\kappa r, \quad \text { where } \kappa=\frac{\sqrt{-8 m_{E} E}}{\hbar} .
$$

Consequently, equation (1) turns into

$$
\frac{d s}{d r} \frac{d}{d s}\left[\left(\frac{s}{\kappa}\right)^{2} \frac{d s}{d r} \frac{d}{d s} R\left(\frac{s}{\kappa}\right)\right]+\left[\frac{2}{a_{g}}\left(\frac{s}{\kappa}\right)+\frac{2 m_{E} s^{2}}{\hbar^{2} \kappa^{2}} E\right] R\left(\frac{s}{\kappa}\right)-\ell(\ell+1) R\left(\frac{s}{\kappa}\right)=0 .
$$

Use a new dependent variable,

$$
w(s)=R\left(\frac{s}{\kappa}\right),
$$

and simplify the left side.

$$
\begin{gathered}
\kappa \frac{d}{d s}\left[\left(\frac{s^{2}}{\kappa^{2}}\right) \kappa \frac{d w}{d s}\right]+\left[\frac{2}{a_{g}}\left(\frac{s}{\kappa}\right)+\frac{2 m_{E} s^{2}}{\hbar^{2}}\left(-\frac{\hbar^{2}}{8 m_{E}}\right)\right] w(s)-\ell(\ell+1) w(s)=0 \\
\frac{d}{d s}\left(s^{2} \frac{d w}{d s}\right)+\left[\frac{2 s}{a_{g} \kappa}-\frac{s^{2}}{4}-\ell(\ell+1)\right] w(s)=0
\end{gathered}
$$

Make another change of variables.

$$
w(s)=s^{\ell} e^{-s / 2} u(s)
$$

As a result,

$$
\begin{aligned}
0= & \frac{d}{d s}\left\{s^{2} \frac{d}{d s}\left[s^{\ell} e^{-s / 2} u(s)\right]\right\}+\left[\frac{2 s}{a_{g} \kappa}-\frac{s^{2}}{4}-\ell(\ell+1)\right] s^{\ell} e^{-s / 2} u(s) \\
= & \frac{d}{d s}\left\{s^{2}\left[\ell s^{\ell-1} e^{-s / 2} u(s)+s^{\ell}\left(-\frac{1}{2}\right) e^{-s / 2} u(s)+s^{\ell} e^{-s / 2} \frac{d u}{d s}\right]\right\}+\left[\frac{2 s}{a_{g} \kappa}-\frac{s^{2}}{4}-\ell(\ell+1)\right] s^{\ell} e^{-s / 2} u(s) \\
= & \frac{d}{d s}\left(\ell s^{\ell+1} e^{-s / 2} u(s)-\frac{1}{2} s^{\ell+2} e^{-s / 2} u(s)+s^{\ell+2} e^{-s / 2} \frac{d u}{d s}\right)+\left[\frac{2 s}{a_{g} \kappa}-\frac{s^{2}}{4}-\ell(\ell+1)\right] s^{\ell} e^{-s / 2} u(s) \\
= & {\left[\frac{\ell(\ell+1) s^{\ell} e^{-s / 2} u(s)}{}+\ell s^{\ell+1}\left(-\frac{1}{2}\right) e^{-s / 2} u(s)+\ell s^{\ell+1} e^{-s / 2} \frac{d u}{d s}\right] } \\
& -\frac{1}{2}\left[(\ell+2) s^{\ell+1} e^{-s / 2} u(s)+s^{\ell+2}\left(-\frac{1}{2}\right) e^{-s / 2} u(s)+s^{\ell+2} e^{-s / 2} \frac{d u}{d s}\right] \\
& +\left[(\ell+2) s^{\ell+1} e^{-s / 2} \frac{d u}{d s}+s^{\ell+2}\left(-\frac{1}{2}\right) e^{-s / 2} \frac{d u}{d s}+s^{\ell+2} e^{-s / 2} \frac{d^{2} u}{d s^{2}}\right] \\
= & \quad+\frac{2}{a_{g} \kappa} s^{\ell+1} e^{-s / 2} u(s)-\frac{1}{4} s^{\ell+2} e^{-s / 2} u(s)-\ell(\ell+1) s^{\ell} e^{-s / 2} u(s)
\end{aligned}
$$

Multiply both sides by $e^{s / 2}$.

$$
s^{\ell+2} \frac{d^{2} u}{d s^{2}}+(2 \ell+2-s) s^{\ell+1} \frac{d u}{d s}+\left(\frac{2}{a_{g} \kappa}-\ell-1\right) s^{\ell+1} u(s)=0
$$

Divide both sides by $s^{\ell+1}$.

$$
s \frac{d^{2} u}{d s^{2}}+[(2 \ell+1)+1-s] \frac{d u}{d s}+\left(\frac{2}{a_{g} \kappa}-\ell-1\right) u(s)=0, \quad 0<s<\infty
$$

This is the generalized Laguerre differential equation. Normalizable solutions exist only if the quantity in parentheses multiplying $u(s)$ is a nonnegative integer $(0,1,2, \ldots)$. It's this fact that allows us to determine the eigenenergies of the bound states of the earth-sun system. Let N be the nonnegative integer.

$$
\frac{2}{a_{g} \kappa}-\ell-1=N \quad \rightarrow \quad \frac{2}{a_{g} \kappa}=N+\ell+1
$$

The number on the right side is a positive integer $(1,2, \ldots)$ and is denoted by n.

$$
\frac{2}{a_{g} \kappa}=n \quad \rightarrow \quad 2\left(\frac{G m_{E}^{2} M}{\hbar^{2}}\right)\left(\frac{\hbar}{\sqrt{-8 m_{E} E}}\right)=n
$$

Solve for E.

$$
E_{n}=-\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}}=-\left[\frac{m_{E}}{2 \hbar^{2}}\left(G m_{E} M\right)^{2}\right] \frac{1}{n^{2}}, \quad n=1,2, \ldots
$$

The classical energy of earth is the sum of its kinetic and potential energies. Let r_{o} be the distance from the center of the earth to the center of the sun.

$$
\begin{align*}
E_{c} & =\mathrm{KE}+\mathrm{PE} \\
& =\frac{1}{2} m_{E} v^{2}+\left(-\frac{G m_{E} M}{r_{o}}\right) \tag{2}
\end{align*}
$$

In order to simplify this formula, apply Newton's second law to the earth in the radial direction. The only force acting on the earth is the gravitational force from the sun.

$$
\sum \mathbf{F}=m_{E} \mathbf{a} \quad \Rightarrow \quad-\frac{G m_{E} M}{r_{o}^{2}}=m_{E}\left(-\frac{v^{2}}{r_{o}}\right) \quad \rightarrow \quad \frac{G m_{E} M}{2 r_{o}}=\frac{1}{2} m_{E} v^{2}
$$

Consequently, equation (2) becomes

$$
\begin{aligned}
E_{c} & =\frac{G m_{E} M}{2 r_{o}}+\left(-\frac{G m_{E} M}{r_{o}}\right) \\
& =-\frac{G m_{E} M}{2 r_{o}}
\end{aligned}
$$

Now set E_{c} equal to E_{n}, solve for n^{2}, and write it in terms of the gravitational Bohr radius.

$$
\begin{aligned}
E_{c} & =E_{n} \\
-\frac{G m_{E} M}{2 r_{o}} & =-\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}} \\
n^{2} & =\frac{G m_{E}^{2} M}{\hbar^{2}} r_{o}=\left(\frac{1}{a_{g}}\right) r_{o} \rightarrow n=\sqrt{\frac{r_{o}}{a_{g}}} \\
n & =\sqrt{\frac{G m_{E}^{2} M}{\hbar^{2}} r_{o}}
\end{aligned}
$$

Therefore, the earth's quantum number is

$$
n \approx \sqrt{\frac{\left(6.673 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)^{2}\left(1.99 \times 10^{30} \mathrm{~kg}\right)}{\left(1.054571726 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}\left(1.496 \times 10^{11} \mathrm{~m}\right)} \approx 2.53 \times 10^{74}
$$

If the earth transitions from an initial stationary state with $n=n_{i}$ to a final stationary state with $n=n_{f}$ in which $n_{i}>n_{f}$, then a graviton will be emitted with energy ΔE.

$$
\begin{aligned}
\Delta E & =E_{n_{i}}-E_{n_{f}} \\
& =-\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n_{i}^{2}}+\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n_{f}^{2}} \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
\end{aligned}
$$

For the particular case that $n_{i}=n$ and $n_{f}=n-1$,

$$
\Delta E=\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2}}\left[\frac{1}{(n-1)^{2}}-\frac{1}{n^{2}}\right] .
$$

Because of how large n is, it's necessary to rewrite the expression in square brackets.

$$
\begin{aligned}
\Delta E & =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2}}\left[\frac{1}{n^{2}\left(1-\frac{1}{n}\right)^{2}}-\frac{1}{n^{2}}\right] \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2}} \frac{1}{n^{2}}\left[\frac{1}{\left(1-\frac{1}{n}\right)^{2}}-1\right] \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}}\left[\left(1-\frac{1}{n}\right)^{-2}-1\right] \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}}\left[1+(-2)\left(-\frac{1}{n}\right)+\frac{(-2)(-2-1)}{2!}\left(-\frac{1}{n}\right)^{2}+\frac{(-2)(-2-1)(-2-2)}{3!}\left(-\frac{1}{n}\right)^{3}+\cdots-1\right] \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}}\left[2\left(\frac{1}{n}\right)+3\left(\frac{1}{n}\right)^{2}+4\left(\frac{1}{n}\right)^{3}+5\left(\frac{1}{n}\right)^{4}+\cdots\right]
\end{aligned}
$$

The higher-order terms are extremely negligible compared to the first in the square brackets.

$$
\begin{align*}
\Delta E & =\frac{G^{2} M^{2} m_{E}^{3}}{2 \hbar^{2} n^{2}}\left[2\left(\frac{1}{n}\right)\right] \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{\hbar^{2}}\left(\frac{1}{n^{2}}\right)\left(\frac{1}{n}\right) \\
& =\frac{G^{2} M^{2} m_{E}^{3}}{\hbar^{2}}\left(\frac{\hbar^{2}}{G m_{E}^{2} M r_{o}}\right)\left(\frac{\hbar}{m_{E}} \frac{1}{\sqrt{G M r_{o}}}\right) \\
& =\hbar \sqrt{\frac{G M}{r_{o}^{3}}} \tag{3}\\
& \approx\left(1.054571726 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right) \sqrt{\frac{\left(6.673 \times 10^{-11} \frac{{\mathrm{~N} \cdot \mathrm{~m}^{2}}_{\mathrm{kg}^{2}}^{3}}{}\left(1.99 \times 10^{30} \mathrm{~kg}\right)\right.}{\left(1.496 \times 10^{11} \mathrm{~m}\right)^{3}}}
\end{align*}
$$

Therefore,

$$
\Delta E \approx 2.10 \times 10^{-41} \mathrm{~J}
$$

Now calculate the wavelength from equation (3).

$$
\begin{aligned}
\Delta E & =\hbar \sqrt{\frac{G M}{r_{o}^{3}}} \\
h \nu & =\frac{h}{2 \pi} \sqrt{\frac{G M}{r_{o}^{3}}} \quad \rightarrow \quad \nu=\frac{1}{2 \pi} \sqrt{\frac{G M}{r_{o}^{3}}} \\
h\left(\frac{c}{\lambda}\right) & =\frac{h}{2 \pi} \sqrt{\frac{G M}{r_{o}^{3}}}
\end{aligned}
$$

Therefore, solving for λ,
$\lambda=2 \pi c \sqrt{\frac{r_{o}^{3}}{G M}} \approx 2 \pi\left(299792458 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \sqrt{\frac{\left(1.496 \times 10^{11} \mathrm{~m}\right)^{3}}{\left(6.673 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)}} \approx 9.46 \times 10^{15} \mathrm{~m}$.
Note that one light year is the distance light travels in one year.

$$
\begin{aligned}
1 \text { light year } & =c(1 \text { year }) \\
& \approx\left(299792458 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(1 \text { year } \times \frac{365.25 \text { days }}{1 \text { year }} \times \frac{24 \mathrm{hr}}{1 \text { day }} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right) \\
& \approx 9.46 \times 10^{15} \mathrm{~m}
\end{aligned}
$$

That means

$$
\lambda \approx 9.46 \times 10^{15} \mathrm{~m} \times \frac{1 \text { light year }}{9.46 \times 10^{15} \mathrm{~m}} \approx 1.00 \text { light year. }
$$

This remarkable answer is not a coincidence; the wavelength of the graviton is how far light travels in the time it takes the earth to make one revolution around the sun.

[^0]: ${ }^{28}$ Thanks to John Meyer for pointing this out.

